
WebsiteWebsite

ArchitectureArchitecture
Lezione 8

Apache HTTP Server
A getting-started guide for Apache and a survey of the expressive power of its
most commom features.

Michael Serritella
Summer 2010

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Intro to Apache
Apache is an HTTP server. That means that it is a program
which understands the language of HTTP - it can listen for
requests and write proper responses. It is the most common
HTTP server in the world. It allows you to configure program-
matic rules which govern the way requests are handled. This al-
lows you much more expressive power than you would otherwise
have, as hinted in the prior lesson on request processing. It is
a solid program, but its configuration-file language sports a dis-
appointingly hack design, as is typical of free-software projects.
Fortunately, only a little knowledge is required to make a large
impact on your site.

The Apache program itself is named httpd, which you may see
from time to time. The "d" suffix is a common Unix naming
scheme for programs which persist in the background, since they
are known as daemons ("demons"). Since that is a fairly dumb
name, you will increasingly see them called services, which is
what they are called on Windows.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 1

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Motivational examples
Apache can do very many complex things, but it can also do
some simple tasks that you may have always wanted. We'll dive
into a few motivational examples, showing a preview of Apache's
configuration-file language. We will see the code necessary for
each example, taken out of context, as we will see the context
later.

Directory listings on or off

If you go to the URI of a directory name, if Apache cannot
find an "index.*", then it may show a listing of the files in the
directory. However, you may not want this. If you want to
toggle the directory listing on or off, it's just one line of code.

Apache

Options +Indexes

And, of course, there's the opposite:
Apache

Options -Indexes

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 2

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

You can also get Apache to build customized directory listings -
including extra features into the page, omitting some files from
the listing, etc. - using the ORLY module.

Custom error pages

We saw this in the last lesson when we saw HTTP response
codes. You can give a custom error page to handle errors such
as 404/not found errors, or else the server or the browser can
make their own. Here is a way to give your own page in place
of 404 errors:

Apache

This is an absolute path, so to speak, relative to the
root of your site within the actual filesystem.
ErrorDocument 404 /errorpages/myown404.html

Compressing output

We saw before that the you may save a lot of time & space
resources by compressing content, such as HTML, CSS, and
JavaScript, before sending it to the user. Apache allows con-
figuration options for this; here is a simplified example:

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 3

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Apache

The "DEFLATE" is a postprocessor function (an "output filter")
which compresses the output using gzip, so long as it has one
of the given MIME types.
AddOutputFilterByType DEFLATE text/html text/css text/javascript

Not all browsers support gzipped content, so in reality, you
would want to add some conditionals to make sure that the
right browser gets the right content. See an official docu-
mentation page for a more responsible recommendation.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 4

http://httpd.apache.org/docs/2.2/mod/mod_deflate.html#recommended
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html#recommended

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Configuration files
Now, let us zoom out and give some context to these examples.
What is this Apache code? Where do you write it?

The code we've seen should occur in configuration files. Here,
we will explore the different types of configuration files and the
general structure of their contents. In the process, we will learn
the basic design of Apache.

Directives

Each of the code lines that we've seen have demonstrated di-
rectives. These are the declarative statements which tell the
Apache server what to do. We have not yet seen the statements
which group them together or designate their context.

For an example of a directive, see the documentation snippet
for the ErrorDocument directive. For a more ambitious one,
which still has some small examples, see Header.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 5

http://httpd.apache.org/docs/2.2/mod/core.html#errordocument
http://httpd.apache.org/docs/2.2/mod/mod_headers.html#header

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Configuration file hierarchy

Some configurations apply to Apache as a whole. Some apply
to each site that Apache manages (one instance of the program
may manage multiple sites/domains). And some apply on a
per-directory basis.

So, we have two different types of configuration files, and within
them, we can also use some language features to designate the
context of directives. Generally, we have global configuration
files and directory-specific configuration files.

Global configuration files

Configuration files may be placed in a "global" area of the
filesystem, away from the actual files of the site. For in-
stance, the most important such configuration file is called
"httpd.conf" and exists in "/etc/apache2" within the filesystem.
This is read when Apache starts, unless you specify another
configuration file on the command line. Within this file, you
may include other configuration files, similar to an include di-
rective in C++.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 6

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Within the contents of these files, you may give directives
which apply to anywhere within your sites - any folder or file -
and you may give directives which apply to your server or site
as a whole.

Directory-specific configuration files

Within your main configuration files, you can specify whether
to allow directory-specific configuration files. If you do, small
configuration files may be placed within each directory, and
they may override the global configurations. They do so in
a cascading manner, walking through each directory which is
in the path of a request. For instance, if the user requests
"images/photos/bob.jpg", the server will check for directory-
specific files within the root directory, then "images/", and then
"images/photos/". More local configuration files may override
less local ones.

The configuration files are named .htaccess (note the leading
period) by default. You may change that with the Access-
FileName directive. They are enabled by default, which you

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 7

http://httpd.apache.org/docs/2.2/mod/core.html#accessfilename
http://httpd.apache.org/docs/2.2/mod/core.html#accessfilename

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

may disable with AllowOverride.

Syntax: configuration sections

Now, within each file, you may surround directives with some
syntax to say that they apply to certain directories, files, URIs,
or sites. They bascially look similar to HTML tags, and they
are called configuration sections. Here are some examples:

Apache

<Location /images>
A directive for the given URI..
</Location>

<Directory /images/photos>
A directive for the given filesystem directory..
e.g. ErrorDocument, Options, etc.

<Files contactus.html>
A directive that applies to the given file..
</Files>

</Directory>

We will see each type of configuration section. For an overview,
you can read this page at the official documentation.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 8

http://httpd.apache.org/docs/2.2/mod/core.html#allowoverride
http://httpd.apache.org/docs/2.2/sections.html

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Virtual Hosts

Apache may service more than one site at a time. More rel-
evantly: it may service more than one subdomain at a time.
Apache has to be configured to listen for requests for all rele-
vant domains, and you need a way to give configuration options
specific to each domain. Enter the VirtualHost section.

If you want to serve more than one (sub)domain, you have to
set up virtual hosts. Within a global configuration file, you
must do two things to get virtual hosts working: You have to
declare that you are listening for those requests, and you have
to specify where the requests go.

The declaration of interest looks like this:
Apache

Listen for any IP address (*) on port 80.
You could just do an asterisk with no specific port.
NameVirtualHost *:80

Note: This declaration alone does not ensure that people will
be able to find your site on the Internet at that address. People
still have to find your server machine first. Then, people will
assail it with requests for whatever domain. You are telling

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 9

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Apache that it should listen and respond to those requests for
the given domain.

The specification of locations for the domain looks like this:
Apache

For the main domain.
<VirtualHost *:80>

DocumentRoot /var/www/
ServerName www.cis4930.com

Nested directives..
</VirtualHost>

For the subdomain.
<VirtualHost *:80>

DocumentRoot /var/www/somethingDirectory
ServerName something.cis4930.com

Nested directives..
</VirtualHost>

Locations and Directories

More commonly useful are location and directory sections. But
wait - what's the difference?

We saw before that requests need not correspond to files in the
filesystem. In fact, requests can be completely abstract - the

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 10

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

requested file need not exist, or it may exist somewhere else.
So, when the client gives a request, the request is an abstract..
Location. And when it finally maps to a directory in the filesys-
tem, it is a.. Directory.

You may give specific URIs or paths for these sections, or you
may give regular expressions, so that any matching URI or
path will receive the effect of the configuration. Additionally,
all child URIs and paths will be affected by the configuration,
so applying a directive for "Location /" will apply it to the
whole site.

See the documentation for Location and Directory.

Revisiting per-directory configuration

Writing directives in an .htaccess file is functionally identical to
writing them in a directory section within a main configuration
file. The .htaccess files do offer some unique flexibility, but
they should generally be avoided unless you cannot write to
the main configuration file. This is usually the case in shared
Web hosting, however, so you may have to use .htaccess files.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 11

http://httpd.apache.org/docs/2.2/mod/core.html#location
http://httpd.apache.org/docs/2.2/mod/core.html#directory

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Revisiting directives

In the documentation, each directive has a standard listing of
its powers and abilities. In it, one of its most important distinc-
tions is its Context, which is the list of configuration sections
in which it may appear. See an example with ForceType,
and read the documentation on the types of attributes used
to describe directives.

Modules
Apache is extensible, and it has a module system by which mod-
ules can provide new directives. There is a "core" module which
contains all of Apache's default directives (see documenta-
tion), and there are several dozen modules that come standard
with Apache. You could conceivably write your own in C/C++.
To see a listing of officially-recognized modules with links to their
documentation, see here.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 12

http://httpd.apache.org/docs/2.2/mod/core.html#forcetype
http://httpd.apache.org/docs/2.2/mod/directive-dict.html
http://httpd.apache.org/docs/2.2/mod/core.html
http://httpd.apache.org/docs/2.2/mod/core.html
http://httpd.apache.org/docs/2.2/mod/

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Guideposts to common features
Apache's features are broken up into fuzzily-divided modules,
and the directives have a completely nonstandard naming scheme.
Even if you know Apache's capabilities - which is the most you
should care about for this course - you still may not know where
to find them or how to execute them.

Here is a list of some useful modules and their summaries. Each
of the entries has a link to the documentation page for the mod-
ule, where you can find information about directives.

mod_core (Docs) A hodgepodge of directives; look here first.

mod_actions (Docs) Execute scripts when certain MIME types are
requested, instead of serving the file.

mod_alias (Docs) Give aliases for files, possibly using regular ex-
pressions; give redirection responses; etc. Sometimes this is all you
need.

mod_deflate (Docs) Serve compressed content.

mod_dir (Docs) Control the default page (e.g. index.html) of a di-
rectory, and control trailing-slash redirects.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 13

http://httpd.apache.org/docs/2.2/mod/core.html
http://httpd.apache.org/docs/2.2/mod/mod_actions.html
http://httpd.apache.org/docs/2.2/mod/mod_alias.html
http://httpd.apache.org/docs/2.2/mod/mod_deflate.html
http://httpd.apache.org/docs/2.2/mod/mod_dir.html

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

mod_expires (Docs) Give the client caching information in the re-
sponse headers.

mod_headers (Docs) Write arbitrary headers in the response.

mod_include (Docs) Allow for HTML files to include other HTML
files, just like in programming languages (warning: taxes CPU and
overall speed).

mod_mime (Docs) Control the sending of the Content-Type reponse
header.

mod_rewrite (Docs) Rewrite request URIs using regular expres-
sions.

mod_speling (Docs) Allow for spelling or capitalization mistakes
in requests.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 14

http://httpd.apache.org/docs/2.2/mod/mod_expires.html
http://httpd.apache.org/docs/2.2/mod/mod_headers.html
http://httpd.apache.org/docs/2.2/mod/mod_include.html
http://httpd.apache.org/docs/2.2/mod/mod_mime.html
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.2/mod/mod_speling.html

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Client authentication
Apache can be used as a basic means of authenticating the client
with a username & password. The method is typically called
"HTTP authentication", since it is a simple protocol which uses
HTTP headers to pass the client's credentials.

You've surely seen this kind of authentication before. You go
to a URI for a file or folder, and the browser usually gives you
a small dialog box (popup message) prompting you for a name
and password. You press OK or Cancel, and that's it. This is
not the same kind of authentication you use in most modern
sites, with "Login"/"Sign Out" buttons that are written into the
page; that is significantly more complicated. This is a cheap
solution that works decently well and which is independent of
the site content (i.e. you don't have to rewrite your pages with
new buttons and new semantics).

Basic concept

This is our first foray into authentication and security, so per-
haps we should introduce a few small concepts. What's a good

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 15

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

way to check if a user has the right password?

When giving a username & password, rather than send the
password literally, it is more secure to send a "digest" of the
password, also known as a "hash" of it. This digest/hash is the
return value of a function (a "hash function") which accepts
the password; it should look like gibberish, and it should more
or less directly correspond to the password. It should be hard
for someone to work in the inverse direction and figure out the
password if given the digest.

So, similarly, rather than store the password, it's more secure to
store the digest. Then, the client sends you a digest, you check
it against your copy of the digest, and you can be virtually
certain that they know the password1.

Protocol

There are two flavors of the protocol, each of which builds upon
HTTP by using some new headers. There is basic authentica-
tion and digest authentication.

1Modern security protocols have evolved from this thinking, but this is a good basis and is still used.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 16

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

In either case, the client makes a request for a resource which
may or may not be protected; the client does not know. Then,
the server returns a response with code 401/unauthorized. The
user sends back some credentials in a new request, which is oth-
erwise a copy of the old request. If the server is satisfied, the
original resource is served as normal.

In basic authentication, the client sends the username and pass-
word plainly, without any encryption. The username and pass-
word are encoded in Base64, but this does not offer any protec-
tion; there is no secret key and it is reversible, so anyone who
sees it can decode it. Base64 merely serves to eliminate any
problematic characters from the string, like colons, spaces, etc.

In digest authentication, a more complex protocol is used, where
the digest is sent, as described above. Mixed into the digest
is some other challenge-and-response-based data, which makes
the protocol more robust against offline eavesdroppers.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 17

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Apache configuration

To achieve this in Apache, you basically have to make a file
which contains the acceptable credentials, perhaps using a tool
to do so, and then tell Apache to require credentials from the
client and to match them against your file. There is a thorough
walkthrough here, in the official documentation.

Advantages and disadvantages

HTTP authentication is simple, and it will stop most people
from snooping around. However, it is vulnerable to man-in-
the-middle attacks, where the network connection between the
client and server is insecure. In practice, it shouldn't be used
by clients who are in a LAN with untrusted people, since the
request may pass through them (and come entirely within their
control) and since the response is entirely unencrypted. HTTP
authentication also lacks a way for you as the site author to
manage the session of the client, so you can terminate the ses-
sion when you wish, like after five minutes of inactivity. You
have to wait for the user to close the window/tab and/or clear
the history/cache (browser-dependent, of course).

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 18

http://httpd.apache.org/docs/2.2/howto/auth.html

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

CGI programming
As we mentioned before, the server may accept a request and
then, instead of returning the contents of an existing file, run
a program and return its output. The type of program which
runs is called a CGI program.

Intro to CGI

CGI stands for Common Gateway Interface. The CGI standard
describes a way for a server to pass Web-request information
to any program which it can instantiate. This is done by pop-
ulating some environment variables with standard names. To
glance at an overview, see Wikipedia.

Theoretically, any text-based C or C++ program can already
produce a Web page, since it can write text which has HTML
tags. Now, it can receive the right inputs. If you're not familiar
with them, environment variables are like mega-global variables
that exist between programs; they can be passed to a program
when it starts, like argc and argv, and they are passed by the
program which instantiates the recipient program.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 19

http://en.wikipedia.org/wiki/Common_Gateway_Interface

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

PHP as a server-side scripting language

Virtually any language will do, but PHP makes a particularly
good choice. It has built-in functions for handling inputs from
requests, writing responses and their headers, and manipulat-
ing strings in ways that are typically needed on a Web server.
PHP is a language with a small learning curve which can build
complex programs. Its Apache module, mod_php, is the most
popular Apache module, and it is the most or second-most pop-
ular Web language (depending on whether you count Java as
a Web language, since it has its JSP flavor).

Serve it plain or with some hot sauce?

With Apache configuration, for a given request, you can choose
to invoke a CGI program or not. Here is an example directive
by which you can force all files in a directory to trigger PHP
execution (assume this is in a directory configuration section):

Apache

ForceType application/x-httpd-php

And what if you have a directory of PHP scripts that you want

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 20

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

to serve as plain text, like if you are giving PHP code examples?
Apache

ForceType text/plain

Or perhaps this.
AddType text/plain .php

Using such configurations, for example, you can actually redi-
rect all image requests to PHP scripts that build images on the
fly or conditionally reject the user's request for the image.

PHP installation details

PHP is often bundled within Apache's executable, so that Apache
does not have to launch a new program in order to run PHP. It
may also be run as a separate CGI program, as it may be good
for security and reliability to decouple the programs. One can
crash and the other will not be as affeced, for instance. This is
slightly slower and loses a little bit of language power on PHP's
part, since, as a module, PHP could ask Apache to do things
(for the future: see Apache Functions on PHP's documen-
tation site). Still, some hosting companies choose to keep PHP
separate as a CGI program.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 21

http://php.net/manual/en/ref.apache.php

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Request paths and security

You may be wondering a few things about how Apache fields
requests for sensitive files, like script files (PHP) or configura-
tion files (.htaccess). Can you be sure that the server will not
serve your PHP files as plain text, instead of executing them
and returning their contents? What if there's a glitch? Believe
it or not, once per aeon, this happens. Let's learn about this
and learn how to minimize the risk of anything too terrible hap-
pening as a result.

Background knowledge: Race conditions

A race condition is an undesirable relationship among a set of
events - like a set of computing tasks - where the result de-
pends on a race between the operations, not on a well-enforced
policy. Many race conditions exist in the wild, but perhaps
most commonly, this may happen when multiple programs in
an operating system are running concurrently and they need to
access a file - like if one reads and another writes. If you are
very careful, you can almost certainly avoid this problem.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 22

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Background knowledge: Human nature

Most people are not super careful all the time.

Server files and race conditions

Although Apache is very commonly used, conceptually, there
exists a risk of a race condition between Apache's reading of files
and your writing them. Configuration files and principal site
files may be incorrectly read or incorrectly regarded as blank.

Race conditions may not be the culprit behind scripts served
as text; it's difficult to tell when the occurrence is so extremely
rare. It is likely that they are at fault, but at the very least,
they are a good enough reason to be careful.

Parsing of configuration files and type sniffing

In light of these problems, let us look simply at the way Apache
decides how to serve a requested file. First, it checks for config-
uration files. Perhaps a configuration file is momentarily blank
or incomplete. The configuration file may have told Apache

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 23

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

how to handle that particular request, and now we have a prob-
lem.

Alternatively, the configuration file is inconsequential. After
all, most of the time, you don't have to specify to serve JPEG
files as image/jpeg. Apache figures it out, either by checking
the filename's extension (".jpg") or by "sniffing" the file - check-
ing its first few bytes. Some files are not properly named, or
maybe they have no extension. If the file is incorrectly read
as a result of a race condition and it needs to be sniffed, there
may be a problem.

Perhaps the most important lessons here are that many race
conditions may exist, and they correspond to different areas of
code within Apache. They are effectively independent, and
maybe you can try to depend on the parts of code within
Apache that are most simple, which are least likely to have
careless errors.

Apache seems least likely to serve a configuration file if it is
requested; that part of code is likely uncomplicated. The file
may not be named ".htaccess", which does raise a complication,

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 24

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

so perhaps you could avoid giving the configuration files custom
names. Even still, there isn't much you could do about this
problem. You can more or less trust that it will work. Let's
turn our attention to the problem of serving script files as plain
text.

Background knowledge: The document root

Each site managed by the server has a "document root", which
is a directory in the filesystem that serves as the root directory
of the site. Now, if a user makes a request with "../" in the URI,
Apache will (perhaps unfortunately) resolve the URI; for exam-
ple, requesting "www.example.com/asdf/subdir/../hello.html"
will go to "www.example.com/asdf/hello.html". However, re-
quests may not go higher than the document root. Apache will
stop there.

The code which performs this check is likely very simple, and
it is extremely rare that it will result in a race condition. Tech-
nically, it does depend on a configuration file to define the doc-
ument root, but that may be in a main configuration file that
almost never changes.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 25

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Read more about the document root at the official docu-
mentation.

Finally: Hiding script implementations

That's great, but how can we take advantage of this document-
root rule? Well, the script files that people can request may
very rarely become exposed. At the very least, it is conceiv-
able. And there isn't too much you can do about that.

However, within those script files, you may include other script
files, just like in C++ or any programming language, and those
inclusions are not limited by Apache's document-root rules,
since they have nothing to do with HTTP requests. The PHP
interpreter may simply access the filesystem in any normal way.
So, the files under the document root may include files which
are outside the document root, such as within a directory that
is the sibling of the document root. The bulk of a script's imple-
mentation can be in those files, and the (potentially) exposed
script need only include the a file and call one function. The
hidden implementation can take care of the rest.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 26

http://httpd.apache.org/docs/2.2/urlmapping.html#documentroot
http://httpd.apache.org/docs/2.2/urlmapping.html#documentroot

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Rewriting requests (!)

Now for the big show. This is doubtlessly one of Apache's most
powerful features, and it can streamline your entire site architec-
ture, especially including its layout on the filesystem. We have
mentioned that request URIs do not necessarily have a direct
correspondence with filesystem paths. Now, we're going to blow
that wide open. Requests may be entirely rewritten by Apache
and then handled internally as sub-requests that the user does
not see.

Simple aliasing

Using mod_alias, you can essentially make shortcuts from
one part of the filesystem to another. More precisely, you can
make "shortcuts" from an URI to any part of the filesystem.
You can make shortcuts for whole directories, specific files, or
even patterns (regular expressions) of URIs. The destination
path can even include some parts of the source URI.

This is fine for simple tasks and even some fairly advanced ones.
See the documentation for more explanation and examples.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 27

http://httpd.apache.org/docs/2.2/mod/mod_alias.html

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

The documentation recommends to use mod_alias to help hide
script implementations. You can do this by aliasing an URI to a
place in your filesystem that is outside of the document root and
cannot be directly requested. This is a fine-enough way of doing
the job, but it has implications on your filesystem structure that
may seem unnatural. For instance, most sites have a directory,
such as "/products", with some scripts, and "/products/images"
with some images. Or at least it is common to have some
kind of subdirectory of a directory which contains scripts. You
would either have to put all of your content in a place which
is not in the document root, or you would have to make a
combination of aliasing rules to move the "...images" requests
back to their natural place. You might want to consider just
keeping it simple and hiding your script implementations as
described above.

Traditional redirection

Still using mod_alias, you can tell the user that the requested
resource has moved - i.e. you can issue a redirect. You may
give temporary redirects or permanent redirects, which, as you

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 28

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

may imagine, has consequences on the client side, such as with
search engines or browser caches.

Rewriting using mod_rewrite

Finally, there is mod_rewrite. This is a much more power-
ful alternative to mod_alias. It can consider the state of the
environment, including the existence of files, the current time,
environment variables, and more; it can include randomization
and input from user-generated (administrator-generated) pro-
grams to assist in its redirection choice; it can chain many rules
together; set cookies; and more.

Official documentation

A pretty good walkthrough of mod_rewrite is available on its
documentation page. Additionally, Apache provides an URL
Rewriting Guide which helps introduce related technology
(e.g. regular expressions) and provide useful examples.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 29

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://httpd.apache.org/docs/2.2/rewrite/
http://httpd.apache.org/docs/2.2/rewrite/

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Turning it on first

Before you start rewriting URLs, you need to actually set a
directive to enable mod_rewrite. Though it is likely included
in your Apache installation, it does not execute by default.

In a configuration file and in the appropriate configuration sec-
tion (directory, etc.), do this:

Apache

RewriteEngine on

Though most Apache directives are declarative, this appears to
be an imperative command; how cute.

If you create rewriting rules within a .htaccess file, you need to
do two things. You need to inform Apache of the URI directory
which corresponds to that directory, so it knows which part of
the URI to rewrite. See the documentation on RewriteBase.
Second, you need to make sure the "FollowSymLinks" option
is enabled for the directory in question, as described in the
documentation for RewriteRule.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 30

http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html#rewritebase
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html#rewriterule

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Specifying conditions upon which you rewrite

You may test for a wide range of conditions to see if a rewriting
rule should be applied to a given URI. The most interesting
thing is that the conditions may have little to do with the URI
itself. But first, let's look a those more simple cases.

First example

Let's say you want to rewrite URIs that begin with "rewriteMe",
followed by three capital letters and an underscore, such as
"rewriteMeXYZ_index.html". You can specify this condition
in its own directive, which appears before the directive which
actually specifies the rewriting expression. Your directive would
look like this:

Apache

RewriteCond %{REQUEST_URI} ^.*/rewriteMe[A-Z]{3}_[^/]*$

Let's walk through these regular expressions. The first pa-
rameter tells Apache which string it should test, and we are
testing the request URI, of course. Next is the pattern; if this
matches, the entire RewriteCond condition is satisfied. The

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 31

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

"ˆ" and "$" frame the regular expression, since they mean "the
beginning of the string" and "the end of the string." In some
patterns, you may not care where the pattern matches, as long
as it matches somewhere within the string, but in this case,
we want to make sure it appears in the last part of the URI.
The "." means any character, and the "*" means the previous
thing (the dot) 0 or more times. Then we have a slash, as
it would literally appear in the URI. Then we have a literal
string, and then we have "any character in between A and Z,
inclusive", and after that, "the previous thing 3 times". Then a
literal underscore, and then "any character that is not a slash",
"zero or more times" (i.e. slashes cannot come after this point).

Explaining regular expressions in general is way out of the
scope of this course, so you are not required to be skillful for
this course. Basically, in real life, if you can imagine the pat-
tern, there is probably a regular expression for it, and it may
take you a half hour or an hour to suss it out. You generally
only have to do this when setting up your site, so you shouldn't
mind having this occasional, time-intensive cost.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 32

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Directive behavior

In addition, you could prefix the pattern with "!", meaning
that the string should not match. There are some other prefix
symbols that invoke non-regular-exprssion behvaior, such as
"<" and ">" (lexicographical string compare). If you provide
multiple rewrite conditions before you give the rewrite rule,
then the conditions should all be satisfied if the rule is to be
executed.

The directive can also be customized with flags. Most notably,
it can be made case-insensitive. The flags come after the pat-
tern, with the syntax " [FlagOne,FlagTwo]". The not-case-
sensitive flag is "NC". See all options in the documentation.

Testing the environment

Now, that was a sort of simple example, in a way. The regular
expression is annoying-looking, but it is also typical. But it
was simple in that it only considers the URI. If you want, you
can consider many more things, as shown in the documenta-
tion. Some of these are environmental flags, like whether the
request has already been rewritten or whether the connection

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 33

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

is over SSL. These appear as strings which you can test for
a pattern; in another cute "design" choice, some of these are
"true"/"false", and some are "on"/"off".

Let's look at an example of checking the system time. Suppose
you write a stock-ticker page, and the stocks are only active
from 9:30 AM - 4:00 PM. Outside that range, you want to
display a simple page that says "Sorry" and/or fetches the stock
price from a different database. Within that time, you need
to get the live stock price, and this page gets loaded a million
times a day. Since PHP is an interpreted language, fetching
the server time (perhaps a string?), parsing it out, comparing
it, etc., will take more time than it would optimally, like if
you were using a C program. You'd like to not execute that
if-statement a million times a day. So, you'd like to redirect
the request for "stockTicker.php" to "stockTicker_open.php"
or "stockTicker_closed.php", to reflect whether the market is
open or closed. The rewrite condition is more interesting than
the rewrite rule, in this case. Let's look at it:

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 34

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Apache

RewriteCond %{TIME_HOUR}%{TIME_MIN} >0930
RewriteCond %{TIME_HOUR}%{TIME_MIN} <1600
Rewrite the URI to the "open" script
"Else" (though no "else" sytnax necessary), rewrite to "closed"

The code in this example is more or less jacked from the URI
Rewriting Guide, so check that out.

Another special power of rewrite conditions is that they can
check whether the URI points to a file vs. a directory, a non-
empty file, an executable file, or a few other things, as visible
in the directive's documentation. These tests are ostensibly
modeled on the tests you can do in Bash scripting. We will
see an example later.

Specifying what to rewrite

Now, here it is. How do you do the deed? Simple cases are
simple enough. But, of course, it can get complicated. In
more complicated examples, we will see how to use parts of the
pattern to reconstruct the replacement.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 35

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

First example

Trivial examples will look a lot like mod_alias. Let's say we
want to redirect all inquires to a "random.png" to a PHP script
which generates a random image. This is not even pattern-
based, and it does not even require a rewrite condition. But
let's see it, anyway:

Apache

RewriteEngine on
RewriteRule random\.png randomImage.php

That's it. We have to escape the "." within the pattern so
it does not appear like our earlier ".", which means "any one
character." However, we don't need to do that within the re-
placement, since the replacement is not (so much) a pattern,
and "any one character" would be meaningless there. A dot is
taken as a literal dot.

Backreferences

Let's go back to our mod_alias example of the "rewriteMe"
files. Say that we wanted to rewrite those files such that
"rewriteMeQWE_something.html" goes to

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 36

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

"something_QWE.html". We want to use that part of the pat-
tern and put it elsewhere within the replacement string. First,
we need to designate that part of the pattern which is to be
used later; we need to put it in parenthesis. There may be up
to nine such parenthetical sections. Then, in the replacement
string, we use the form "$N", going from "$1" to "$9", to signify
those parenthetical sections.

To solve our example problem:
Apache

RewriteRule rewriteMe([A-Z]{3})_([^\.]*)\.(.*) $2_$1.$3

Here, let's look at the parentheticals. The first is the QWE (or
whatever) capital-letter pattern. The second is the filename
after the "_" but before the extension (using the "not-a-dot"
trick, like our "not-a-slash" before). The third is the filename's
extension.

You may notice that we didn't have the "ˆ" and "$" in this
one to frame the beginning and end of the pattern. This is
to show you that you could relax some of the pattern in the

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 37

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

rewrite rule as long as you know the string already satisfied
the rewrite condition; it's a design choice, and it may not al-
ways be valid. If the same "rewriteMeXYZ_something.else"
pattern were to appear anywhere else in the URI, it would
also be replaced. But you can usually be pretty sure that that
isn't the case - perhaps only in the query string could there be
a problem.

This behavior is the same as in other regular-expression-based
programs; backreferences are a common feature. You can
also add qualifiers to the parenthetical sections, like an extra
"{2}" afterwards to signify that the contents of the parenthesis
should appear twice, etc.

Whoops: also in mod_alias

Yeah, it turns out that backreferences are already a part of
mod_alias. See the documentation for AliasMatch, which is
quite powerful in and of itself. However, in mod_rewrite, there
are two kinds of backreferences: There are backreferences from
the pattern of the rewrite rule, and there are backreferences
from the pattern of the (most recent) rewrite condition.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 38

http://httpd.apache.org/docs/2.2/mod/mod_alias.html#aliasmatch

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Flags

You can add flags to the rewrite rules, however, which is unique
to mod_rewrite. These have the same syntax as the flags for
the rewrite conditions, but the flags themselves are different,
there are more of them, and some of them have surprisingly
active behavior. For instance, you can set a cookie, send a
forbidden or "gone" status code, set a MIME type for the re-
sponse, and more.

You can see the documentation for RewriteRule, and you can
see a special part of the URL Rewriting Guide the explains
the flags.

Implications of rewriting

So, now we know that we can rewrite stuff. What kind of
implications does this have on our site architecture? It turns
out that rewriting - and knowledge of Apache in general - can
greatly improve our site architecture, especially in the way that
scripts and files are organized in the filesystem.

We will see a running example throughout this section. Imagine

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 39

http://httpd.apache.org/docs/2.2/rewrite/rewrite_flags.html

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

that we have a site, www.store.com, and we want to have this
URI: "http://www.store.com/Books/2007/APublisherName"2.
This will work as a book search, searching for all books in 2007
with the given publisher name. We will see various ways of
doing this with URI rewriting, closing in on a more and more
efficient solution.

Intuitive URIs

So we want to do a book search. Most search pages have
some URI like "search.php?bk=abc&hack=1&asdf...", but re-
ally, those are annoying. The user could never remember them
or verbally communicate them to other people, and it has a
large amount of information that the user shouldn't have to
care about. Should they care that the solution is written in
PHP? The variable names? No. Let's start to fix this. Our
goal URI is pretty nice; it's also about as intuitive as it gets.
You see the same kind of URIs for Wikipedia articles and a
small but growing number of websites. They should be the
wave of the future. So, how would you do it? Here's one way.

2We could have a trailing slash here in our example, though that changes things. See the documentation for mod_dir
and the "Trailing Slash Problem" in the URL Rewriting Guide introduction for some background knowledge. Let's
make some loose assumptions for now.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 40

http://httpd.apache.org/docs/2.2/rewrite/rewrite_guide.html#trailingslash

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Say that there is actually a directory structure on your site
like "/Books/2007/", and inside is a script called
"APublisherName.php", another called
"AnotherPublisherName.php", etc., and each of the scripts gives
the proper search results (for 2007 books). How do we take the
intuitively-written requests and transform them to the PHP
scripts?

We check to see if the URI + ".php" is a valid regular file, and
if so, we redirect the request there. Else, we let the 404 error
be sent back as usual. Here is the final code:

Apache

RewriteEngine on
RewriteCond %{REQUEST_FILENAME}.php -f
RewriteRule ^(.*) $1.php

So that is a win. You may not want to do it for our current
book-search example, but if you were making Wikipedia, you
should look into it.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 41

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Virtualized filesystem structure

Now for the next step. We'd really like to not have all of
these directories lying around. Long story short, a depthwise-
complex filesystem structure will degrade performance linearly
for each new level of depth - not good. And a breadthwise-
complex one will degrade performance logarithmically for each
new file in a directory. Any degradation is not great, but loga-
rithmic beats linear. How can we "flatten" our directory struc-
ture in some way?

Let's shoot for this instead. In a folder "/bookSearches/", we
have scripts like "search_2007_APublisherName.php". Let's
use backreferencing to rewrite these requests. The solution is
simple enough, actually.

Apache

RewriteEngine on
RewriteCond %{REQUEST_URI} /Books/([^/]+)/([^/]+)
RewriteRule ^.*$ /bookSearches/search_%1_%2.php

We use %-styled backreferences here to refer to parentheticals
from the rewrite condition. The "+" means "one or more of the
previous", as opposed to the "*", which allows zero or more.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 42

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Note that many types of filesystem reorganization are possi-
ble with URI rewriting; you don't simply have to flatten a
directory structure.

Consolidation of program inputs

Now we come around to a most elegant solution. Let's not have
all these script files, anyway. They are annoying to maintain,
they incur a minor filesystem overhead which becomes notice-
able when there are hundreds or thousands of files, and they
even leave opportunities for error. Let's consolidate this down
to one file. Let's have a mediaSearch.php, which takes GET
parameters "media", "year", and "publisher".

The result may look like this:
mediaSearch.php?media=Books&year=2007&publisher=APublisherName

You can probably see where this is going. We can rewrite (or
write) the query string!

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 43

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Apache

RewriteEngine on
RewriteCond %{REQUEST_URI} /([^/]+)/([^/]+)/([^/]+)
RewriteRule ^.*$ /mediaSearch.php?media=%1&year=%2&publisher=%3

And yeah, this can also be done with mod_alias, since we
don't use any environmental state, introduce nondeterminis-
tic behavior, etc.

Next step for the mighty: Can you make versatile rules so that
users can go to approximately-correct URIs, like
"/Books/APublisherName/2007" or just
"/APublisherName/2007" or "/2007/APublisherName"?
Imagine a concerted effort between well-designed PHP scripts
and well-designed Apache rules, still using at most a handful
of files.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 44

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Apache in the wild
If you start out on a shared Web host, you will almost certainly
not have access to the httpd.conf file. You probably won't have
any special influence over Apache except with .htaccess files.
You should expect to work within this limitation.

This is usually not really a problem because you usually don't
run a high-profile site on a "shared" server3. And if it's part of
a somewhat-high-profile site, then it's probably just the CDN
which is on a shared server. So you can't do any performance
tuning, and you likely can't do some of the request-handling ac-
robatics that we've seen.

With the next step up - virtual private servers - you can control
Apache completely, including stopping and restarting it.

3It still may be shared among multiple parties, but in the business, "shared" implies massively shared.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 45

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Performance issues
Now for a few performance issues. If you're running on a shared
server, you can't care too much about these, because you may
not be able to set the configuration files to do anything about
these problems and, after all, your resources may be conceptu-
ally infinite. So you might not care. But keep these in mind in
case you design a more pro-level site that has finite resources.

Minimizing disk access

Disk access is one of the most influential performance factors
of probably any program which uses the disk an infinite num-
ber of times. Websites are no exception. In order to minimize
disk access, you can virtualize your filesystem structure, as de-
scribed in the section on URI rewriting.

Somewhat conversely, you can minimize the number of .htac-
cess files you use, as their use incurs a lot more disk checking
than usual. Try to keep all directives in the main configuration
files, and if you do use .htaccess files, don't make the filesystem
too depthwise-complex, or else the directories at every level of

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 46

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

depth for every request will need to be checked.

Minimizing RAM and CPU usage

Probably, the most influential factors to RAM and CPU usage
are your script's algorithms, so this is a little out of the scope of
Apache configuration. However, it is important to know that
you can only serve a certain number of people concurrently be-
fore you run into trouble, and using Apache, you can configure
the number of connections that you serve simultaneously. More
specifically, a Web server should never swap memory to disk, or
it may incur a seemingly endless loop of users refreshing their
browsers and issuing more requests.

To avoid this, you may take several routes, including distribut-
ing your site on a CDN such that your main site only serves
the main document and no images, movies, etc. More simply,
you can run some tests and determine a conservative maximum
number of connections that your application can service. You
can use Apache to enforce this limit using some of the "Max*"
directives in the module mpm_common.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 47

http://httpd.apache.org/docs/2.2/mod/mpm_common.html

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

Compiling regular expressions, like in mod_rewrite and others,
does take some CPU usage. It may be used in a tradeoff against
extra disk access, in which case it's almost certainly worth it.
But you should know that regular expressions are some of the
more complex things that Apache can do computationally.

There is one feature that we have not seen, in which Apache
can facilitate HTML files including other HTML files via an
"#include" directive within HTML comments, which Apache
parses before it sends out the page. You can see it at
mod_include. This is useful for offering modularity to ba-
sic, static sites, but it isn't appropriate for large performance-
conscious sites, as it incurs more RAM & CPU usage, since it
must check every byte of the output instead of just transferring
it in blocks.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 48

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

The takeaway
Apache has some unnaturally-named commands and some hairy
syntax. When designing your site, you don't really need to know
the syntax; you mostly set it and forget it. More importantly,
you should try to learn Apache's capabilities, so you can make
appropriate designs. Here is a coarse summary of this lesson:

• Apache is a program that understands HTTP, receives requests, and
sends responses.

• Apache's configuration comes in text files, which may exist "globally,"
with one file including another starting at httpd.conf, or within
directories, in which case they apply in a cascading manner, in
combination with the global configurations.

• Management of custom error pages, gzipped content, and custom
directory listings are just some of the ways that Apache fits into a
site architecture.

• Each (nontrivial) line of an Apache configuration file is a directive,
and the first word of the directive is the directive name. Even if
you see some kind of English-looking phrase, like "Allow from all",
you should look for "Allow" as a directive name if you want to find
it in the documentation.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 49

WebsiteArchitectureWebsiteArchitecture
Lezione 8 Apache HTTP Server

• Apache may call any text-based program (commonly PHP) in order
to generate text that it sends back as a response, instead of sending
the contents of a file.

• Apache may implement the HTTP authentication method, which is
a simple way of checking passwords for client authentication.

• Apache may rewrite requests and change them into entirely different
beasts; this allows you to hide your scripts and present a clean
interface to the client, among other things.

• Regular expressions may be used to enhance common configuration-
file rules and the URI-rewriting engine.

• Each request in a Web server should not use too much RAM; Apache
allows limitations on the number of concurrent users and other
such performance parameters.

© Michael Serritella, 2010 • CIS4930: Website Architecture • The Florida State University 50

